Rules of angles (7–9)

Contents

1	basic rules of angles	1						
2 Angles in parallel lines (7–9)								
3	Angles in polygons (year 9)							
	3.1 The central angle in a regular polygon	4						
	3.2 The exterior angle of any polygon	5						
	3.3 The interior angle of any polygon	5						

1 basic rules of angles

There are various *Rules of angles* that you should know. These can be used in any geometrical diagram to work out missing angles without the diagram having to be drawn to scale. We do not need a protractor since the rule will give us the exact answer. The basic rules you should know are:

Angles on a straight line add to 180°

Angles at a point add to 360°

Vertically opposite angles are equal

Note: this is not like angles at a point since here we are dealing with where two straight lines intersect, like a pair of scissors:

1

 $z = 63^{\circ}$

Vertically opposite angles

Angles in a triangle add to 180°

$$a + 47 + 52 = 180$$

 $a + 99 = 180$

Angles in a triangle

 $a = 81^{\circ}$

Angles in a quadrilateral add to 360°

 $b + 120 + b \div 120 = 360$ Angles in a quadrilateral

$$2b + 240 = 360$$

$$2b = 120$$

$$b = 30^{\circ}$$

Notice how, in each case, we set out our working clearly using a logical algebraic layout and we always give the reason for a particular angle.

Example. Find x and y in the following diagram:

To find x:

$$x + 75 = 180$$

Angles on a straight line

$$x = 105^{\circ}$$

To find y:

Vertically opposite angles $y = 85^{\circ}$

Angles in parallel lines (7–9)

When a line passes through a pair of parallel lines, this line is called a transversal:

A transversal creates three letters of the alphabet which hide 3 new rules of angles:

Alternate angles are equal (Z-angles)

Corresponding angles are equal (F-angles)

Interior angles add to 180° (C-angles)

Have a look at these examples:

$$c = 70^{\circ}$$

Alternate angles

$$d + 75 = 180$$
$$d = 105^{\circ}$$

Interior angles

$$e = 72^{\circ}$$

Corresponding angles

$$d=105^{\rm o}$$

Note that the "F" is back to front!

$$m=28^{\circ}$$
 Corresponding angles $m+n=180^{\circ}$ Angles on a straight line $n=152^{\circ}$

Angles in quadrilaterals

We have already seen that the angles in any quadrilateral add up to 360°. There is an interesting special case that allows us to use what we have just learned about angles in parallel lines:

In a parallelogram, angles next to each other make a "C" shape (interior angles). This means that they add up to 180°. Therefore,

In a parallelogram, opposite angles are equal.

3 Angles in polygons (year 9)

- A polygon is a shape with straight sides.
- A regular polygon has all sides and all angles equal.

We may need to find several angles in polygons.

3.1 The central angle in a regular polygon

The angles sit around a circle and so add to 360°. Each angle is $360 \div n$, where n is the number of sides of the polygon.

E.g. here we have a hexagon:

Each angle is $360 \div 6 = 60^{\circ}$

3.2 The exterior angle of any polygon

In any polygon, the exterior angles are found where the extension of a side meets the next side, as the diagram shows. Since these extensions all form a "windmill" effect, their total turn is equivalent to a full circle.

Sum of exterior angles = 360°

Example. What is the exterior angle of a regular pentagon?

Each angle is equal as the pentagon is regular. Therefore,

Each angle =
$$360 \div 5$$

= 72°

3.3 The interior angle of any polygon

We know that:

- in a triangle, interior angles add to 180°;
- in a quadrilateral, interior angles add to 360°.

If we follow the pattern, we notice that the total goes up by 180° each time.

But why is this? If we take one vertex of any polygon and join it to all of the others, we create triangles:

Quadrilateral triangles: $2 \times 180 = 360$

Pentagon

Hexagon

2 triangles: $2 \times 180 = 360^{\circ}$ 2 triangles: $3 \times 180 = 540^{\circ}$ 2 triangles: $4 \times 180 = 720^{\circ}$

Notice also that the number of triangles needed is always two less than the number of sides in the polygon. So in general:

$$\begin{bmatrix} \text{Sum of} \\ \text{interior angles} \end{bmatrix} = 180(n-2), \text{ where } n \text{ is the number of sides}$$

Moreover, if the polygon is regular, we can divide the sum by n to obtain the size of each interior angle. The following table sums these up for a few polygons:

Number of sides	n	3	4	5	6	7	8	9	10
Number of triangles	n-2	1	2	3	4	5	6	7	8
Sum of angles	180(n-2)	180	360	540	720	900	1080	1260	1440
Each angle if regular	$\frac{180(n-2)}{n}$	60	90	108	120	128.57	135	140	144

Example. What is the missing angle below?

In a pentagon, the sum of the interior angles is 540°.

$$x + 135 + 130 + 75 + 120 = 540$$

 $x + 460 = 540$
 $x = 80^{\circ}$

Example. What is the size of any interior angle in a regular dodecagon? (NB A dodecagon has 12 sides)

A 12 sided shape can be divided into 10 triangles.

Sum of interior angles =
$$10 \times 180^{\circ}$$

= 1800°

Therefore

Each interior angle =
$$1800 \div 12$$

= 150°

Using Angle Facts

Lines

Vertically Opposite Angles are equal Angles on a straight line add to 180° Angles at a point add up to 360°

Triangles & Quadrilaterals

Angles in a triangle add up to 180°
Base angles of an isosceles triangle are equal
Angles in an equilateral triangle are equal
Angles in a quadrilateral add up to 360°

Parallel lines

Alternate angles are equal Corresponding angles are equal Interior angles add to 180°

One or two of the reasons above must be quoted in **all** examinations involving angle problems when the problem requires an explanation.

For the following problems, find the missing angles and give a reason to go with each angle (choose it from the list above). Please note – calculations ARE NOT reasons.

EXTENSION TASK: Find the missing angles below, in any order.

q = alternate/corresponding/vertically opposite to

Angle Rules and Parallel Lines: True or False?

You are given some statements about Diagram 1 and you have to decide which are true and which are false. When you have done this for diagrams 1, 3, 5, 7 and 9 you should then make up some statements of your own for the other diagrams

Diagram 1 Angle b = 115 ⁰	Angles b and c are equal	
Angles a and d are equal because they are alternate angles	Angles $a + b = 180^{0}$ because they form a straight line	
Diagram 1 Angle a = 115 ⁰	Angles a and d are equal because they are corresponding angles	
Angles $d + 65^0 = 180^0$ because they form a straight line	Angle $c = 65^{\circ}$ because c and 65° are corresponding angles	
Angles b + c = 180° because they form a straight line	Diagram 1 Angle $d = 115^0$	
Diagram 1 $D = 180^0 - 65$	Angle a = c because they are opposite angles	

Diagram 3 $180^0 - 42^0 = f$	Diagram 3 Angle $f = 58^{\circ}$		
There is a right angle in the diagram	Diagram 3 A right angle is 900		
Diagram 3 $f = 42^{0}$	Angles f + 42 ⁰ = 180 ⁰ because they form a straight line		
Angles $f + 42^0 = 90^0$ because they make a right angle	Diagram 3 Angle $f = 48^0$		

Angle $h = 87^0$ because it is opposite the angle 87^0	$j + 87^0 + 43^0 = 180^0$ because they form a straight line		
Angle i = 43 ⁰ because they are opposite angles	Angles $j + i = 90^{0}$ because they make a right angle		
Diagram 5 Angle $h = 137^0$	Angle h is the same as j + 87 ⁰ because they are opposite angles		
Angles $h + i = 180^{0}$ because they form a straight line	Diagram 5 Angle $j = 60^{\circ}$		
Diagram 5 Angle $h = 180^0 - 43^0$	All of the angles add up to 360 ⁰		

Diagram 7 Angle $q + 81^0 = 90^0$	Diagram 7 $r = 31^0$		
Diagram 7 $81^0 + n + r = 180^0$	Angle $p = 81^0 + q$ because they are opposite		
Angles r and q are equal because they are alternate angles	$n = 81^0$ because there is an isosceles triangle		
Diagram 7 m = 112 ⁰	Angle m + 68° = 180° as they form a straight line		
Angle $p = 68^0$ because they are corresponding angles	Diagram 7 $q = 68^{0}$		
Angle $m = q + 81^0$ as they form alternate angles	Angle $n = 68^0$ because it is opposite the 68^0		

Angle z and y are called alternate angles	Diagram 9 Angle m = 660
Diagram 9 Angle $z = 124^0$	Diagram 9 Angle $x = Angle y$
The angle opposite the 124 ⁰ corresponds to angle x	Angles x and y are called alternate angles
$m + 124^0 = 180^0$ as they form a straight line	Angle x is opposite the 124 ⁰
Angles m and n are corresponding angles	Diagram 9 Angle $n = 56^0$
There are only 2 different sized angles in this diagram	Angles n and y are corresponding angles

•		